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We systematically evaluate four methods for solving two-dimensional, linear elliptic 
partial differential equations on general domains. The four methods are: standard finite 
differences; collocation, Galerkin, and least squares using Hermite cubic piecewise poly- 
nomials. The collocation method is new in that it applies to general curved domains and we 
describe this aspect in detail. Our test set of 17 problems ranges from simple to moderately 
complex. The principal conclusion is that collocation is the most efficient method for 
general use. Standard finite differences is sometimes more efficient for very crude accuracy 
(where efficiency is not important anyway) but it is also sometimes enormously less efficient 
even for very modest accuracy. The accuracy of the Gale&in and least-squares methods is 
sometimes better than collocation, but the extra cost always negates this advantage for our 
problems. 

Contents. 1. Statement of the problem and procedures, conclusions. 2. Comparison of standard 
finite differences and collocation with Hermite cubits. 2.1. The numerical methods. 2.2. The problem 
set. 2.3. Results of the comparisons. 2.4. Conclusions. 3. Comparison of collocation, Galerkin and 
least squares. 3.1. The methods, 3.2. Results of the comparisons. 3.3. Conclusions. 4. Some observa- 
tions. 4.1. Unequal mesh spacing for collocation. 4.2. Additional accuracy at the mesh nodes for 
collocation. 4.3. Dependence of accuracy on the nature of the operator as well as the solution. 
4.4. Comparison with previous work. Appendix 1. The comparison data for 17 problems. Appendix 2. 
The solution of problem 17. 

1. STATEMENT OF THE PROBLEM AND PROCEDURES, CONCLUSIONS 

Our approach to evaluating numerical methods for partial differential equations 
has already been outlined in Houstis et al. [I 11, This approach is a specific instance 
of the general framework presented by Rice [15]. Briefly this approach is to first choose 
a sample set of problems from the domain of interest. The domain here is linear, 
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second order elliptic partial differential equations which are somewhat “general.” 
That is, they have various complications (variable coefficients, curved domains, 
reentrant corners, etc.) that are typical in applications and which prevent the straight- 
forward use of specialized methods or theories. We specifically exclude such specialized 
methods from consideration even though they are applicable to some of the problems 
as we are concerned with evaluating methods with general applicability. One next 
selects some solution methods (four in this paper) and criteria of performance 
(accuracy achieved, execution time, and memory used) and finally one applies the 
methods to the sample set of problems while measuring the performance criteria. 

The cost of solving partial differential equations forces a small sample set 
(17 problems here) and thus the reliability of the evaluations is not as high as we 
would like. Nevertheless, most of the phenomena observed here are quite consistent 
over the problem set which suggests that the probability of this being the result of 
chance is quite low. 

One key to validity of an evaluation such as this is the precise definition of the 
problems, methods, and measures of performance. The sample problem set is 
presented in the next section. The numerical methods are discussed in Sections 2 and 3 
along with a detailed synopsis of them. Our method of colloctaion for curved bound- 
aries is new. 

A common weakness of previous efforts of this type is the lack of precision and 
information about the numerical methods. 

It is insufficient to simply state “Method X was used”; variations in the implemen- 
tation of Method X affect the performance measures by factors of 2, 10, or 1000. 
We believe that we have implemented all the numerical methods in a way that gives 
close to maximum performance. We have particularly striven to be “fair” to each 
method and have not used special techniques (e.g.,assembly language code) for one 
in order to enhance its performance relative to the others. 

We summarize our procedure and conclusions as follows: 

Probkm class. Second-order linear elliptic partial differential equations of general 
nature, i.e., some complication present in coefficients, domain, or solution. 

Solution requirements. Moderate accuracy (1 to 3 digits correct) achievable 
“in core” with up to 300 unknowns (60,000 words or less of memory needed). 

Four numerical methods. Standard finite differences; collocation, Galerkin and 
least squares using piecewise cubic polynomials (Hermite cubits). 

Criteria of performance (eficiency). Execution time for a given relative accuracy 
(in the max norm). 

Conclusions (in the limited context specified above). 1. There is normally a 
“crossover point” at low accuracy beyond which collocation is more efficient than 
standard finite differences. Even when finite differences is more efficient, it is by a 
small amount while collocation is sometimes dramatically more efficient than finite 
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differences. Collocation is much superior for problems whose boundary conditions 
involved derivatives. 

2. There is practically no difference at all between Gale&in and least squares 
in performance. They tend to be slightly more accurate than collocation but are very 
much less efficient because of the increased work to compute the coefficients in the 
matrix problem to be solved. 

2. COMPARISON OF STANDARD FINITE DIFFERENCES AND 
COLLOCATION WITH HERMITE CUBICS 

2.1. The Numerical Methods 

The fbst comparison made in this paper is between the standard finite difference 
method (5-point star) and collocation with Hermite cubits. See Appendix 2, Strang 
and Fix [17], and Collatz [5] for detailed information on these methods. Simply stated, 
in collocation the coefficients of the approximate solution are chosen to satisfy exactZy 
the partial differential equation and boundary conditions at selected points. 

In simple situations with a uniform mesh length of h, the finite difference method is 
second order, O(h2) and collocation is fourth order, O(h4). Thus, asymptotically in 
these situations, as the accuracy increases, collocation becomes more efficient than 
standard finite differences. This suggests the definition of a crossover point in the 
performance, where collocation becomes more efficient. One of our objectives is to 
ascertain how collocation applies to more general problems and to determine the 
expected location of the crossover point. 

StandardJinite dzJ%rerzces. This method has the following components, 

(a) Grid: A rectangular grid is placed over the domain and all points in the 
domain or on its boundary are used. The grid is uniformly spaced except for 
Problems 16, 17, where the geometry made that undesirable. 

(b) Approximation to the operator: The derivatives in the differential equation 
are replaced by simple central, 3-point finite difference approximations involving the 
grid points. 

(c) Approximation to the boundary conditions: Derivatives in Neumann or 
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mixed boundary conditions are approximated as indicated by the diagram: x-derivative 
at P estimated from value at P and the two x-points; y-derivative at P estimated from 
value at P and the two y-points. The values at the y-points are found by linear inter- 
polation from the o-points. 

(d) Equation solution: The linear system is solved by Gauss elimination taking 
into account the zeros in the system (profile or frontal method). 

Collocation. This method has the following components. 

(a) Elements: A rectangular grid is placed over the domain. Rectangular 
elements whose center is not inside the domain are discarded. The grid is uniform 
except for Problems 16, 17. 

(b) Approximation space: the Hermite bicubic polynomials. 

(c) Approximation to the operator: The approximate solution satisfies the 
differential equation exactly at the four Gauss points of a rectangular element. For 
nonrectangular elements near the boundary the four Gauss points are projected 
inside the element as indicated by the diagram, where x = differential equation 
collocation points. 

(d) Approximation to the boundary conditions: The boundary conditions are 
interpolated at a selected set of boundary points for either Dirichlet or Neumann 
boundary conditions. If the domain is a rectangle and the problem has Dirichlet 
conditions = 0 (Problems 1,7, 8,9, 10, and 15) then the Hermite bicubics are selected 
so as to automatically satisfy the boundary conditions and no boundary approximation 
equations are used. This is the same procedure as for the Gale&in and least-squares 
methods. The details on how the boundary collocation points are selected are given 
below. 

(e) Equation solution: Same as for standard finite differences. 

The most sensitive aspect of collocation is the placement of the boundary collocation 
points for nonrectangular domains. First, one must take care that these points are 
reasonably separated from interior collocation points. This is not difficult to do even 
in an automatic way, but the penalty for overlooking this point is an ill-conditioned 
computation with large errors. 

One first overlays the region with a rectangular grid and discards the elements 
which intersect the domain slightly or not at all. Let Sb be the number of boundary 
sides of the resulting rectangular partition. Then the number of boundary collocation 
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FIG. 1. Two schemes for distributing boundary collocation points. (Left:; Zpoint scheme; 
right: midpoint scheme.) The x’s are the systematic collocation points and the O’s are the four extra 
ones. 

points required is 2& + 4. We use two basic schemes for distributing the boundary 
collocation points as illustrated by the diagrams for a simple rectangle (Fig. 1). 

A theoretical analysis indicates that the 2-point scheme is superior for rectangular 
regions if the two points used are the Gauss points for each boundary segment. 
We compared the Gauss points with equally spaced points and found that the equally 
spaced points give slightly better accuracy for rectangular domains. We made 
numerous numerical experiments which confirmed that the 2-point scheme is superior 
for rectangular regions. 

FIG. 2. The two schemes for a simple curved domain. (Left: Zpoint scheme; right: midpoint 
scheme.) The lines show how the collocation points are placed on the edge of the rectangular partition 
and then mapped onto the portions of the boundary intersecting each rectangular element. 

The extension of these two schemes to curved domains is illustrated in Fig. 2. 
The theoretical advantage of the 2-point scheme no longer holds for curved bound- 
aries and our experiments confirm that it has no advantage over the midpoint scheme 
in this case. In fact it is, on the average, slightly less accurate. Furthermore, the 
midpoint scheme automatically gives collocation of the boundary conditions at any 
extremities of the domain (for example, for a piecewise rectangular boundary such 
as in Problems 16 and 17, see Fig. 5). It is often essential that collocation of the boundary 
conditions be made at all exterior corners of the domain. The midpoint scheme naturally 
provides this. 

Our procedure is to use the 2-point scheme for boundaries which are straight 
(or nearly so) and parallel to a coordinate axis and to use the midpoint scheme 
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FIG. 3. The combination of the two schemes for a partially rectangular region. The mapping 
from the point on the rectangular edges to the curved boundary is indicated. 

otherwise. The two schemes may be used together for a domain such as that shown 
above and we do this as shown in Fig. 3. 

There seems to be no particularly advantageous method of distributing the four 
extra collocation points beyond putting them in elements with exterior corners and 
spreading them somewhat evenly around the boundary. We always map the midpoint- 
type collocation points to segments of the curved boundary which are interior to the 
rectangular partition. The points are placed uniformly on each such segment. At times 
this may leave rather large segments of a curved boundary “unused,” but we have not 
found a reliable method of placing collocation points on the intermediate segments. 
We do place collocation points outside the rectangular partition for the 2-point 
scheme. An example is shown in Fig. 4 which illustrates these procedures. 

FIG. 4. Example which illustrates boundary collocation points for the 2-point scheme which are 
outside the rectangular partition and collocation for the midpoint scheme are inside. Collocation is 
not done on two large boundary segments. 

2.2. The Problem Set 

The operators, domains, boundary conditions, and true solutions for the 
17 problems we used are given in Table I. The first eight were previously considered 
by us in Houstis et al. [l 11. We give additional information about some of them: 
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FIG. 5. The geometry and boundary conditions for problems 2, 3, 14, and 17. Problem 16 uses 
the geometry of (c) with the boundary condition u = g everywhere. 

Problem 213. Torsion in a bimetal shaft (Ely and Zienkiewicz [9]). The shear 
modulus G is a step function with G,/G, = 3 (see Fig. 5a). We have replaced the 
step by a short interval (length = l.E-5) where a cubic polynomial blends the two 
values of G smoothly. We measure accuracy here by comparing with a numerical 
solution we have computed which we believe is much more accurate than the ones 
considered in this paper. 

Problem 4. The ellipse is centered at (0, 0) with major and minor axes of 2 and 1. 
By symmetry only the quarter of the elliptical region in the first quadrant was used 
in the computation. 
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Problem 5. The circle has radius 0.5 and center at (0.5,0.5). The solution is 
uniquely determined by imposing the additional condition u(O.5,O) = 1. 

Problem 8. The true solution has a discontinuity in the “2.5” derivative. 

Problem 10. This is a version of a problem from stratospheric physics; see 
McDonald et al. [ 131. 

ProbZem 1 l/12. These problems are of boundary layer type; the square is centered 
at the origin and has side 1. Symmetry was not used. 

ProbZem 13. The product solution b(x) 4(y) has a steep slope (or wave front) 
along a right angle at the center of the domain. We have 

4(x> = 1, x < 0.35, 
= PM 0.35 < x < 0.65, 
= 0, 0.65 < x, 

where p(x) is a quintic polynomial determined so that $(x) has two continuous 
derivatives. 

Problem 14. This problem is similar to that of steady flow past a sphere (Desai 
and Abel [6]). The true solution satisfies the same boundary conditions and has the 
same shape as the solution of the physical problem. 

Problem 15. The solution has a sharp peak at the center of the square and it is 
very small for (x - 0.5)2 + (y - 0.5)2 > 0.01. 

Problem 16/17. This problem is derived from that of heat flow in the concrete 
shield of a nuclear reactor (see Zienkiewicz and Cheung [19]). Problem 16 only has 
the geometry and operator of the real problem. The true solution of Problem 17 
(see Appendix 2) is a complicated function which exhibits the same shape (including 
small singularities at the three reentrant corners) and satisfies the same boundary 
conditions (except along x = 0 and y = 0) as the solution of the physical problem. 

Problems 1,7, 8,9, 13, and 15 are separable and all the operators except for those of 
Problem 6 are formally self-adjoint. 

2.3. Results of the Comparisons 

The data obtained are presented in two forms. In Appendix 1 we tabulate the 
accuracy achieved versus computer time used. For both methods the error is measured 
only at the nodes of the grid used. For most problems we have also measured the 
error at many more points in the domain and this sometimes gives a considerably 
different result. This is discussed in more detail in Section 4. We used a CDC 6500, 
whose long word length gives ample insulation from round-off errors in these 
calculations. 
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TABLE II 

Tabulation of the Crossover Points for 17 Problems” 

Problem 
Digits NF NC 

(log(max error/solution size)) Finite difference Collocation Np”21N~ 

1 1.8 5 2 1.12 
2 3.0 13 4 0.90 
3 1.5 12 3 1.15 
4 3.0 12 4 0.87 
5 1.9 6 2 1.22 
6 0 1 1 1.00 
7 1.8 5 1 2.23 
8 4.0 5 2 1.12 
9 3.0 9 4 0.75 

10 1.1 8 3 0.94 
11 2.2 13 6 0.60 
12 1.3 9 4 0.75 
13 1.3 15 5 0.77 
14 3.6 17 5 0.82 
15 1.2 15 4 0.97 
16 4.1 16 4 1.00 
17 1.8 20 6 0.75 

0 The accuracy (in digits) and numbers Nr and Nc of grid lines is given for the comparison of 
Standard Finite Difference and Collocation with Hermite Cubits. 

In Table II we tabulate the crossover points for all 17 problems. This is expressed 
both in terms of accuracy measured in digits as log(max error/solution size) and the 
number N of subdivisions in each variable. For the nonrectangular regions we give 
an approximate “equivalent” value of N which would give about the same number of 
unknowns, if the region were rectangular. 

We see from Table II that the crossover points range from 0 to 4 digits with 2 as 
a median value. One of the high crossover points comes from Problem 16, where high 
accuracy is obtained by very coarse meshes. Let NF and Nc denote the values of N 
at the cross over point for finite differences and collocation, respectively. There is a 
fairly consistent pattern in the relationship of the values of NF and No, namely, 
N&“/No is about 1. The value of Nc is small (from 1 to 6 with 3 as median) for all 
cases. 

Our results here differ in some cases from those published earlier (Houstis et al. [ Ill). 
The efficiency of both programs has been improved but their relative efficiency has not 
changed much. In our earlier paper we measured the error at many points over the 
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entire domain (bilinear interpolation was used to extend the finite difference solutions). 
The few noticeable differences from the earlier data are due to this change in error 
measurement. We also previously gave data on memory usage as well as execution 
time. We have omitted memory data here as the crossover points for memory are 
somewhat the same as for execution time (this is true also for the new problems 
introduced in this paper). 

We timed separately the formation and the solution of the linear equations. Both 
finite differences and collocation are very similar in the breakdown of execution time, 
as seen in Table III. The solution of the matrix equation was by profile Gauss 
elimination. 

TABLE III 

Sample Data on the Breakdown of Execution Time between Formation 
and Solution of the Linear Equations 

Time for linear system (set) 
Ratio of 

Formation Solution formation/total 

Problem 1 
Collocation, N = 4 0.25 0.46 0.54 
Finite differences, N = 10 0.25 0.56 0.50 
Collocation, N = 8 1.0 4.5 0.22 
Finite differences, N = 17 0.9 3.6 0.20 

Problem 10 
Collocation, N = 8 1.4 4.4 0.24 
Finite Differences, N = 17 1.2 3.4 0.26 

2.4. Conclusions 

A study of Table II and Appendix 1 shows that collocation becomes more efficient 
than standard finite differences at rather low accuracies and/or small values for N. 
Furthermore, when finite differences are more efficient, it is by a small margin, 
whereas collocation is often dramatically more efficient than finite differences. These 
results cover a reasonably broad range of two-dimensional linear elliptic problems 
and show that there is no reason from the point of view of efficiency to use the standard 
finite difference method for this class of problems. 

It is also relevant to note that in practical problems one must almost always 
compute solutions to higher accuracy than is actually required. That is to say, the 
only reliable ways to be certain that one has an error of, say, 5 ‘A (or less) involve 
computing a solution accurate to 1 ‘A or better. This is especially the case for low 
accuracy requirements (e.g., l-10 % error). Collocation is particularly superior for 
Problems 5 and 6, which involve derivative boundary conditions. 
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3. COMPARISON OF COLLOCATION, GALERKIN, AND LEAST SQUARES 

3.1. The Methods 

In all three of these methods we use Hermite cubic polynomials as approximations. 
More specific details are given below but there are two facts worth noting first. First, 
both the Galerkin and least-squares methods involve the evaluation of integrals and 
these have been estimated by using g-point quadrature in each grid rectangle based 
on the tensor product of the 3-point Gauss rule. All the information from the equation 
must be evaluated at 9 points; this compares with 4 points needed for collocation 
in each element (grid rectangle). 

Second, the Galerkin and least-squares methods were implemented only for the 
case where the boundary conditions can be exactly satisfied by choosing the Hermite 
cubic basis appropriately. This restriction makes them intrinsically less flexible and 
should give them an advantage over collocation whenever they are applicable. 
To offset this advantage we used the same Hermite cubic basis for collocation on those 
problems where all three methods are compared. In complex problems it can be very 
difficult (and tedious) to modify the original problem into one where the boundary 
conditions can be satisfied exactly by piecewise cubic polynomials. 

Ritz-Galerkin and least squares. The components of these methods are: 

(a) Elements: Same as for collocation. 

(b) Approximation space: Same as for collocation. 
(c) Approximation to the operator: In each element E of the partition we have 

the Galerkin equation 

g % J’s { pD,BiD,Bi + qD,BiD,Bj + rB,B,} dx dy = ]IEfBj dx dy, 

where the operator L and the true solution U* are defined by 

LU* = (pU,*), + (qU,*), + t-U* =f, 

and 

D, , D, = differentiation operators, 
Bi(x, y), Bj(x, y) = the i and j elements of the Hermite bicubic basis, 
(Y~ = coefficient of Bi in the approximate solution 
(the index i refers to one element only). 

The least-squares equation in each element is 
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The integrals in these equations are approximated by the g-point Gauss quadrature 
rule for rectangles (only rectangular domains were used with these methods). 

(d) Approximation to the boundary conditions: The boundary conditions were 
exactly satisfied by the Hermite cubic basis for all problems (1, 7, 8, 9, 10, and 15) 
attempted with these methods. 

(e) Equation solution: The local equations are assembled (by the direct stiffness 
method) to form the global matrix. This equaiton is solved by Cholesky decom- 
position for band matrices (profile method). 

There are only six problems (1, 7, 8,9, 10, and 15) where Galerkin and least squares 
could be applied, but the results are so consistent that this number seems sufficient 
to draw general conclusions. 

3.2. Results of the Comparisons 

Appendix 1 has data for these six problems and for all three methods. We see $hat 
there is rarely a significant difference between the Galerkin and least-squares methods. 
Table IV gives a sample of some additional typical data for comparing the collocation 
and Galerkin methods. 

One sees from Table IV that collocation is always faster for equal accuracy. The 
advantage decreases as N increases. Note that each collocation equation has 16 non- 
zero terms while there are 36 nonzero coefficients for a Galerkin equation. The 
band widths of the coefficient matrices are essentially the same, but the collocation 
matrix has a much “narrower” profile on the average because the band width is 
variable. On the other hand, the Galerkin coefficient matrix is symmetric which allows 
for a 50 % savings in the computation (this symmetry disappears for non-self-adjoint 
equations). Overall, we feel that the collocation equations can be solved more rapidly 
even for very large values of N. This view is supported by the data in Table IV. 
One also sees for a fixed set of elements (grid) that collocation is sometimes less 
accurate than Galerkin and never more accurate. However, the accuracy advantage 
of Galerkin never compensates for its speed disadvantage in these cases. 

Note that Problem 10 involves fairly complicated functions in the differential 
operator and that this has a large negative effect for the Galerkin and least-squares 
methods. 

3.3. Conclusions 

We see that collocation is a more general method and that it is also more efficient 
than Galerkin or least squares. Collocation is more delicate for complicated regions 
but this is even more the case for Galerkin and, probably, least squares. Thus collo- 
cation is the method of choice among these three for the class of problems represented 
here. 
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4. SOME OBSERVATIONS 

4.1. Unequal Mesh Spacing for Collocation 

There are two disadvantages to collocation compared to standard finite differences: 
(1) It is not well known, (2) Its implementation is slightly more complicated, primarily 
because of the code for the basis functions. The extra complexity (which is not great) 
of collocation is compensated by its greater flexibility. For example, unequal mesh 
spacings can be used with no extra difficulty, no loss in accuracy, and a negligible 
increase in computation. By no loss of accuracy we mean that collocation remains a 
fourth-order method as contrasted to standard finite differences where unequal mesh 
spacing reduces the order from second to first. Similarly, boundary conditions 
involving derivatives cause only minor changes in the computation even for curved 
domains. 

In fact, unequal mesh spacing can dramatically increase the accuracy of collocation 
solutions and often one can see (with little trouble) a reasonable mesh to use. Several 
examples of this occur among the 17 problems considered here, including Problem 13 
(wave front on a right angle) and Problem 15 (sharp peak at center). We solved both 
of these problems with unequally spaced meshes and the resulting improvements are 
tabulated in Table V. The unequally spaced meshes for these examples were chosen 
in what seemed a plausible way, but no attempt was made to optimize the mesh. 

TABLE V 

Illustration of the Possible Improvement in Accuracy of the Collocation 
Method by Using an Unequally Spaced Mesh 

ERROR 

Case Equally spaced mesh Unequally spaced mesh 

Problem 13 
N=6 
N=8 

Problem 1.5 
N=3 
N=6 
N=8 

1.5 x 10-Z 1.8 x 10-S 
7 x 10-Z 4.1 x 10-d 

0.57 0.29 
0.16 0.06 
0.08 0.026 

4.2. Additional Accuracy at the Mesh Nodes for Collocation 

For general collocation there is a phenomenon called superconvergence (see deBoor 
and Swartz [3]) where the order of accuracy at the mesh nodes is higher than elsewhere. 
However, in theory this phenomenon does not occur in using cubic polynomials. 
Nevertheless, we observed substantially improved accuracy at the nodes for some 
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problems while there was none for some others. For two problems there was a 
constant increase in the accuracy at the nodes: a factor of 4 for Problem 7, and 15 
for Problem 4. In some other problems (e.g., 8, 10, 11, and 13) there was a more 
erratic factor of increase, but it exceeded 4 in some case of each of these problems. 
No such phenomenon occurred for the least-squares or Galerkin methods. 

There is a plausible explanation of this as follows: The nature of the theoretical 
error term for collocation is different at the mesh nodes than that at other points, 
but the use of cubic polynomials results in the same order of accuracy for both cases. 
However, for some problems the coefficient of the principal error term at the nodes 
might be significantly smaller than that of the general error term. This could account 
for the phenomenon that we observe. 

4.3. Dependence of Accuracy on the Nature of the Operator as well as the Solution 

It is obvious that the difficulty of obtaining a numerical solution of a partial 
differential equation depends on the nature of the differential operator as well as the 
nature of its solution. This fact may be overlooked, since theory places heavy emphasis 
on the nature of the solution. The effect of the operator, however, can be quite 
significant. For example, compare the widely varying results that are obtained for 
Problems 6, 7, and 16 whose solutions are nearly the same. On the other hand, 
Problems 1, 7, and 9 have very similar results, as one would guess from the fact that 
the differential operators and boundary conditions are similar in nature and all three 
have very well-behaved solutions. We have considered several sets of different 
problems which all have the same solution and have seen a very wide range of 
difficulty in obtaining the same function from problems with different operators. 

4.4. Comparison with Previous Work 

There has been little effort on systematic comparisons of different methods for 
solving partial differential equations; our previous paper (Houstis et al. [I 11) was one 
of the tist. There have been a number of abstract comparisons based on asymptotic 
rates of convergence and asymptotic operation counts for the solution of linear systems 
of equations. See Rice [14] and Birkhoff and Fix [2] for a large number of examples 
of this analysis and references to earlier work. Experience has shown that operation 
counts are reliable for estimating the efficiency of solving linear systems of equations. 
For iterative methods one must take extreme care to terminate the iteration at a level 
compatible with the discretization error of the method. 

The usefulness of asymptotic rates of convergence as guides to the efficiency of 
numerical methods for elliptic problems is still open to question. Specifically, it is not 
known how reliable these rates are as guides for the moderate accuracy requirements 
of typical applications. Discussions of this question is given in the last section of 
Strang and Fix [17] (their asymptotic rates are reliable guides for three example 
problems), in Birkhoff and Fix [2], and in Swartz [18] where several different order 
methods are compared. 

Roache [16] has a section entitled “Remarks on Evaluating Methods” (pp. 109-l 12) 
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which cites 12 papers. He favors simple, low-order methods but none of these papers 
attempts a controlled comparison of methods. 

Eason [7] has a bibliography of 241 items relevant to the least-squares method. 
He cites 26 papers where collocation and 14 papers where Galerkin are compared 
with least squares. We did not locate any systematic and realistic evaluation of 
methods among these 40 references. 

If there is any consistent pattern in the results, it would be that authors find that 
the collocation of boundary conditions is delicate. Many find that least-squares 
approximations to the boundary conditions give better results, primarily because 
they do not use good boundary collocation points. This does suggest that collocation 
of the differential equation combined with least squares for the boundary conditions 
would give a more robust numerical method with little penalty in efficiency. We are 
studying this approach and our preliminary results suggest that this is the case. 

Leissa et al. [12] present a systematic study of the value of nine methods for two 
plate bending problems: A simply supported elliptic plate and a square plate supported 
at four “random” points. The nine methods are compared on the basis of 11 criteria, 
e.g., “suitability for programming, ” “applicability to general regions,” “ease in 
learning.” Efficiency and accuracy were not included directly as criteria and apparently 
were not systematically measured. It is important to note that all of the nine methods 
considered were of limited flexibility and none could be applied to all 17 problems 
included in this study. 

APPENDIX 1: THE COMPARISON DATA FOR 17 PROBLEMS 

The data for the comparison of methods are tabulated in Table AI11 with the grid 
spacing “N” versus the accuracy achieved and execution time. The error given is the 
actual error at the location of the maximum error. The execution time is in seconds 
on a CDC 6500. The “N” given is NF or Nc (see Section 2.3). If the grid is square, 
this is the number of grid lines in one direction; otherwise it is the number of grid lines 
in a square which would have approximately the same number of unknowns. 

The results are presented more compactly in two smaller tables. Table AI presents 
ratios of computation required to achieve a desired accuracy. The number of significant 
digits is tabulated versus the 17 problems and the entries are the ratios of computer 
time for collocation over time for finite differences. The ratios are estimated from the 
data in Table AI11 and are quite rough. Many blanks exist because only very limited 
extrapolation was used. The pattern is quite clear: Collocation and finite differences 
start out at about the same efficiency and then collocation becomes more efficient, 
usually quite rapidly and by a large factor. 

One may crudely estimate the “time order” 01 of these methods by measuring the 
slopes of the curves of error vs time when plotted on log-log paper. The order 01 
estimated is for the relationship 

Error = O(Time”). 
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TABLE AI 

Ratios of Computation Tie for Collocation over Finite Differences for Specified Accuracy Measured 
in Number of Current Significant Digits 

Digits 

Problem 1 2 3 4 5 6 

1 1 

2 

3 1 

4 

5 4/l 
6 

7 

8 

9 

10 211 
11 

12 

13 

14 

15 

16 

17 l/l.2 

l/5 
1 

l/l5 

118 
1 

1.5/l 

1 

1.5/l 

l/7 
1.5/l 

l/2 
1 

211 

l/1.2 

l/90 

1 

1.611 

l/150 

l/120 

l/60 

l/30 

l/4 
l/40 

l/6 

1 

3/l 

l/10 

l/50 

l/75 

l/5 

l/8 
10/l 1 l/4 

TABLE AI1 

Measured Slopes (Y to Estimate the Order of the Methods from Their Actual Performance 

Finite diff. Collocation Galerkin Finite diff. Collocation Galerkin 

Problem o( 4ar (Y 4or 01 4~ Problem 01 4a OL 4a OL 4a 

0.65 2.6 1.44 5.8 

1.13 4.5 2.4 9.6 

0.94 3.8 1.7 6.8 

0.59 2.4 1.37 5.5 

0.47 1.9 4.0 16.0 

0.55 2.2 1.46 5.8 

0.61 2.4 1.39 5.6 

0.58 2.3 0.67 2.7 

1.9 7.6 9 0.58 2.3 1.5 6.0 1.4 5.7 

- 10 0.53 2.1 1.15 4.6 ? 

- 11 0.54 2.2 1.06 4.2 - 

- 12 0.38 1.5 0.68 2.7 - 

- 13 0.67 2.7 ? - 

- 14 0.73 2.9 1.5 6.0 - 

2.0 6.2 15 0.85 3.4 1.19 4.8 1.2 4.8 

1.5 6.1 16 1.44 5.8 2.34 9.4 - 
17 1.05 4.2 1.05 4.2 - 

5S1127/3-4 
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TABLE A III 

The Data for the Comparisons5 

Problem 1 

F.D. 

NP 5 7 10 13 15 17 
1W x Error 373.0 189.0 92.7 55.5 41.6 32.3 

Time 0.109 0.286 0.812 1.843 2.932 4.532 

Cal. 
NC 

lo4 x Error 
Time 

Gal. 

10’ x Error 
Time 

L.S. 
1W x Error 

Time 

2 3 4 5 6 7 8 9 
318.0 56.4 17.9 8.5 3.1 1.8 1.1 

0.110 0.340 0.714 1.328 2.301 3.753 5.521 

96.5 24.5 9.71 5.02 2.11 1.03 0.69 0.404 
1.56 2.9 4.85 7.6 11.24 15.82 21.84 29.05 

222.0 41.2 14.3 6.78 2.58 1.45 0.92 0.533 
1.624 3.091 5.189 8.239 12.03 16.97 23.13 30.51 

Problem 2 

F.D. 

NP 9 12 15 16 19 
10’ x Error 469.0 145.0 41.3 36.8 7.35 5.7 

Time 0.121 0.424 0.78 1.94 2.73 5.7 

Cal. 
NC 8 10 13 14 

10’ x Error 70.8 21.7 4.82 3.14 
Time 0.7 1.71 3.33 4.03 

Problem 3 

F.D. 
NF 6 8 12 15 17 

1Oa x Error 11.2 13.9 3.24 1.88 1.53 
Time 0.11 0.412 0.77 1.92 2.71 

Cal. 
NC 8 10 13 14 

lo* x Error 4.87 0.772 0.223 0.196 
Time 0.72 1.69 3.39 4.17 

Q The abbreviations F.D., Col., Gal., and L.S. are used for finite differences, collocation, Galerkin, 
and least squares, respectively. 

Table continued 
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TABLE A III-Continued 

Problem 4 

F.D. 
NF 4 8 12 16 17 

108 x Error 23.1 7.41 3.62 2.07 1.64 
Time 0.06 0.341 1.33 2.97 4.32 

Cal. 
NC 

108 x Error 
Time 

5 7 
14.2 7.8 

0.191 0.68 

12 15 
0.328 0.22 
3.34 6.23 

Problem 5 

F.D. 

NF 4 8 16 18 
108 x Error 132.7 59.81 19.19 14.13 

Time 0.144 0.992 8.554 12.69 

Cal. 
NC 2 3 4 

108 x Error 345.0 9.67 5.66 
Time 0.422 1.02 2.138 

Problem 6 

F.D. 

NF 5 7 10 13 15 17 
104 x Error 1470. 842.0 447.0 276.0 211.0 167.0 

Time 0.205 0.583 1.768 4.194 6.827 10.83 

cd. 

NC 2 3 4 5 6 7 8 
1W x Error 71.5 4.35 2.81 1.1 0.542 0.290 0.169 

Time 0.394 1.018 2.018 3.841 6.190 9.906 14.971 

Problem 7 

F.D. 

NP 5 7 10 13 15 17 
10” x Error 110.0 51.9 27.8 16.3 12.2 9.65 

Time 0.09 0.239 0.724 1.658 2.675 4.128 

Table continued 
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TABLE A III-Continued 

Problem I (continued) 

Cal. 
NC 

lo4 x Error 
Time 

Gal. 

lo4 x Error 
Time 

L.S. 

lo4 x Error 
Time 

2 3 4 5 6 7 8 
4.48 1.35 0.5 0.279 0.149 0.0863 
0.286 0.638 1.220 2.109 3.337 5.097 

30.5 9.02 2.99 1.31 0.693 0.391 0.229 
0.563 1.346 2.545 4.253 6.578 9.685 13.95 

40.84 9.46 2.73 1.15 0.570 0.304 0.178 
0.623 1.447 2.754 4.590 6.976 10.39 14.56 

Problem 8 

F.D. 

NF 5 7 10 13 15 17 
lo4 x Error 5.9 3.19 1.68 1.04 0.797 0.631 

Time 0.092 0.240 0.721 1.662 2.662 4.119 

Cal. 

NC 
lo* x Error 

Time 

Gal. 
lo4 x Error 

Time 

L.S. 
lo4 x Error 

Time 

2 
0.75 
0.096 

4.67 
6.15 

3 
0.32 
0.293 

0.598 
1.335 

1.497 
1.454 

4 5 
0.20 0.14 
0.605 1.196 

0.292 0.185 
2.51 4.24 

0.840 0.512 
2.731 4.572 

Problem 9 

6 7 8 9 
0.0969 0.0710 0.0540 
2.058 3.314 4.965 

0.0882 0.0395 0.0205 0.0205 
6.57 10.70 13.84 19.01 

0.2813 0.1420 0.0555 0.0144 
7.043 10.36 14.64 20.15 

F.D. 

NF 7 10 13 15 17 
lo4 x Error 169. 93.9 53.6 40.6 31.8 

Time 0.234 0.717 1.58 2.57 3.902 

Cal. 

NC 2 3 4 5 6 7 8 9 
lo4 x Error 515.0 305.0 78.9 42.1 19.8 10.4 3.96 

Time 0.089 0.275 0.620 1.203 2.082 3.368 5.051 

Table continued 
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TABLE A III-Continued 

Problem 9 (continued) 

Gal. 

lo4 x Error 
Time 

149.0 92.9 40.5 19.7 11.6 6.19 4.25 2.49 
0.598 1.378 2.627 4.374 6.840 10.24 14.28 19.60 

L.S. 

lo4 x Error 148.0 182.0 59.2 31.8 14.7 8.62 4.64 3.19 
Time 0.621 1.483 2.806 4.760 7.230 10.59 14.98 20.30 

Problem 10 

F.D. 

NP 5 7 10 13 15 17 
lo* x Error 24.5 28.1 12.9 7.57 6.14 4.56 

Time 0.128 0.328 0.924 2.052 3.113 4.685 

Cal. 
NC 2 3 4 5 6 7 8 9 

10’ x Error 85.0 21.0 11.0 3.3 2.7 1.25 0.688 
Time 0.139 0.381 0.800 1.44 2.49 5.773 8.379 

Gal. 

10’ x Error 
Time 

81.0 0.540 0.478 0.840 0.313 0.660 0.450 
2.036 8.398 13.54 19.81 27.66 37.22 49.13 

L.S. 

lOa x Error 132.0 22.2 8.60 0.654 1.39 1.59 0.804 
Time 2.039 4.668 7.933 13.78 20.20 28.22 37.79 

Problem 11 

F.D. 

NF 5 7 10 13 15 17 
lo* x Error 6.27 4.06 2.07 1.28 0.955 0.805 

Time 0.097 0.238 0.708 1.62 2.55 3.92 

Cal. 

NC 2 4 5 6 7 8 
1Oa x Error 6.0 0.917 0.523 0.321 0.207 0.14 

Time 0.398 2.02 3.72 6.20 9.71 14.54 

Table continued 



346 HOUSTIS ET AL. 

TABLE A III-Continued 

Problem 12 

F.D. 

NE 6 8 11 14 16 18 
lO* x Error 11.31 11.19 8.28 5.68 4.43 3.48 

Time 0.109 0.261 0.717 1.716 2.796 4.181 

Cal. 

NC 3 4 5 6 8 
10e x Error 5.55 3.13 2.53 1.76 0.917 

Time 1.00 2.03 3.71 6.27 14.88 

Problem 13 

F.D. 

NF 5 7 10 13 15 17 19 
10e x Error 89.1 32.5 19.7 11.7 4.71 6.48 4.35 

Time 0.106 0.261 0.767 1.73 2.75 4.36 6.31 

Cal. 

NF 3 4 5 6 7 8 
lo2 x Error 53.4 11.3 0.99 1.51 5.99 7.03 
lOa x Error” 0.177 0.0413 

Time 1. 2.082 3.8 6.297 9.916 15.03 

Problem 14 

F.D. 

NF 6 8 11 13 15 16 18 
lo4 x Error 36.9 35.3 10.4 9.26 5.96 4.98 4.30 

Time 0.123 0.447 0.860 1.128 2.051 2.851 4.515 

Cal. 
NC 7 10 13 15 

lo* x Error 23.7 9.31 2.31 1.14 
Time 0.654 1.789 3.546 6.393 

Problem 15 

F.D. 
NF 5 7 10 13 15 17 19 

lo* x Error 125.0 45.8 25.6 5.38 4.87 4.20 3.59 
Time 0.112 0.278 0.80 1.84 2.92 4.42 6.70 

* Collocation, nonuniform mesh. 
Table continued 
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TABLE A III-Continued 

Problem 15 bmrfinued) 

Cal. 

NC 2 3 4 5 6 7 8 9 
lo* x Error 230.0 57.1 33.8 32.0 15.9 10.3 8.16 1.49 

Time 0.126 0.359 0.722 1.337 2.258 3.534 5.338 7.93 
10e x Error!’ 29.0 30.0 9.1 6.16 3.8 2.65 

Timeb 0.325 0.700 1.323 2.262 3.588 5.518 

Gal. 

lo2 x Error 
Time 

26.3 36.7 7.58 6.65 6.35 2.03 1.13 
1.246 2.879 5.348 8.622 12.93 18.21 24.59 

L.S. 

108 x Error 22.3 36.3 9.14 6.11 6.43 1.80 1.08 
Time 1.329 2.992 5.540 8.932 13.24 18.94 25.56 

Problem 16 

F.D. 

NP 6 12 14 17 19 
lo5 x Error 57.07 14.90 2.38 1.37 1.10 

Time 0.081 1.779 2.176 4.145 6.153 

Cal. 
NC 8 10 11 16 

106 x Error 10.67 6.41 2.60 0.29 
Time 1.176 2.377 3.027 7.871 

Problem 17 

F.D. 

NF 6 9 12 14 19 
Error 19.39 24.46 7.39 2.85 1.60 
Time 0.233 0.854 2.702 3.265 7.899 

Cal. 

NC 8 11 15 16 17 18 
Error 7.46 3.90 1.48 0.98 1.13 0.97 
Time 1.588 3.585 8.793 9.153 10.05 11.58 
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If one assumes that most of the computer time is spent in solving the linear systems, 
then one would have 

Error = O(iV--la). 

This assumption is clearly not satisfied here. In Table AI1 we present our estimates 
of CY and 401. We see that there is some correlation with the simple model which gives 
4or = 2 for finite differences and 4a = 4 for the Hermite cubic method. There are 
also some very wide deviations from this. 

APPENDIX 2: THE SOLUTION OF PROBLEM 17 

To describe the exact solution ZJ of Problem 17, we set 

4x, Y> = 10%(x, Y, 6 0, Wdx, Y, a, b> cl, 

where, by construction, the numerator on the right is zero on the stair-step outer 
boundary of the domain (see Fig. 5). The numerator is the product of (x - l), 
( y - l), and three factors of the form ri’3 sin(3(8, + r/2)/2), where ri is the distance 
between (x, v) and the reentrant corner (x1, y,), i = 1,2,3. The denominator is a 
modification of the numerator, which is positive in a region containing the boundary 
of the heat shield and which is equal to the numerator along the circular part of the 
boundary. Note that this function has the correct singularities at the reentrant corners. 
Specifically: 

Ax, Y, a, b, 4 = Nx - ~XY - 1) + a’+, ~91 fi W, Y, xi , yi > b, ~1, 
i=l 

C(x, y) = (x2 + y2 - 0.64)2, 

T(x, Y, xd , yi , b, 4 = R(x, Y, xi , yi , b> WG Y, xi , yi 3 4, 

R(x, Y, xi , yi , b) = Kx - 4’ + (Y - A2 + Wx, v>l”“, 
S(x, y, Xi , yi , c) = sin(Wrc Wb - yJ[x - xi11 + GW) + cC(x, Y> 

with branch cut along y - yi = x - xi, x, < x. 

After some experimentation, we found that a = -0.5, b = 0.1, c = 7.0 gives a 
solution u which is similar to the solution one expects for the temperature in the heat 
shield. 

Remark about the evaluation of u and f = V2u. In our first attempt at the con- 
struction of a suitable U, we used a symbolic differentiator to obtain function sub- 
routines to evaluate u,, and u,, . The resulting programs for u,, and u,, are very 
complicated. We note that u, u,, , u,, can each be evaluated by successive calls to a 
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number of very simple subroutines. Each of these evaluates V, V,, , V,, , where Vis a 
product V = WZ. Schematically the program is (where WX denotes W, , etc.) 

w = a-., 
wx = . ..) 

wxx = *a’) 
z zzz *.-, 

zx = . ..) 

zxx = *-*, 

v=wxz, 
vz= wxxz+ wxzx, 

vxx= wxxxz+2.ox wxxzx+ wxzxx, 

and similarly for the y-derivatives. The values of V, VX, VXX, VY, VYY are stored 
in a common block for use by subsequent routines. In most cases, statements like the 
first six above: W = *.a, a-- ZXX = .*-, do not appear since the values are already 
computed by previously called subroutines. The program can be quickly written and 
debugged. 
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